EconPapers    
Economics at your fingertips  
 

Robust concentration graph model selection

Anna Gottard and Simona Pacillo

Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3070-3079

Abstract: Concentration graph models are an attractive tool to explore the conditional independence structure in a multivariate normal distribution. In applications, in absence of a priori knowledge, it is possible to select the graph underlying a set of data through an appropriate model selection procedure. The recently proposed procedure, SINful, is appealing but sensitive to outliers, as it utilizes the sample estimator of the covariance matrix. A method to make the SINful procedure robust with respect to the presence of outlying observations, is proposed. This is based on the minimum covariance determinant (MCD) estimator for the variance-covariance matrix. A simulation study shows the advantages of this method.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00555-0
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3070-3079

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3070-3079