Robust model selection with flexible trimming
Marco Riani and
Anthony C. Atkinson
Computational Statistics & Data Analysis, 2010, vol. 54, issue 12, 3300-3312
Abstract:
The forward search provides data-driven flexible trimming of a Cp statistic for the choice of regression models that reveals the effect of outliers on model selection. An informed robust model choice follows. Even in small samples, the statistic has a null distribution indistinguishable from an F distribution. Limits on acceptable values of the Cp statistic follow. Two examples of widely differing size are discussed. A powerful graphical tool is the generalized candlestick plot, which summarizes the information on all forward searches and on the choice of models. A comparison is made with the use of M-estimation in robust model choice.
Keywords: Candlestick; plot; Cp; Cp(m); Distributional; robustness; F; distribution; Forward; search; M-estimation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00109-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:12:p:3300-3312
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().