EconPapers    
Economics at your fingertips  
 

Semiparametric stochastic frontier models for clustered data

Ruggero Bellio and Luca Grassetti

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 71-83

Abstract: The mixed model approach to semiparametric regression is considered for stochastic frontier models, with focus on clustered data. Standard assumptions about the model component representing the inefficiency effect lead to a closed skew normal distribution for the response. Model parameters are estimated by a generalization of restricted maximum likelihood, and random effects are estimated by an orthodox best linear unbiased prediction procedure. The method is assessed by means of Monte Carlo studies, and illustrated by an empirical application on hospital productivity.

Keywords: Clustered; data; Efficiency; evaluation; Flexible; frontier; Random; effect; Semiparametric; regression; Skew; normality (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00186-6
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:71-83

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-12
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:71-83