Calibration of computer models with multivariate output
Rui Paulo,
Gonzalo García-Donato and
Jesús Palomo ()
Computational Statistics & Data Analysis, 2012, vol. 56, issue 12, 3959-3974
Abstract:
The problem of calibrating computer models that produce multivariate output is considered, with a particular emphasis on the situation where the model is computationally demanding. The proposed methodology builds on Gaussian process-based response-surface approximations to each of the components of the output of the computer model to produce an emulator of the multivariate output. This emulator is then combined in a statistical model involving field observations, which is then used to produce calibration strategies for the parameters of the computer model. The results of applying this methodology to a simulated example and to a real application are presented.
Keywords: Computer model; Validation; Gaussian process; Linear model of coregionalization; Bayesian analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312002228
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:12:p:3959-3974
DOI: 10.1016/j.csda.2012.05.023
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().