EconPapers    
Economics at your fingertips  
 

Bayesian approaches to the model selection problem in the analysis of latent stage-sequential process

Hwan Chung and Hsiu-Ching Chang

Computational Statistics & Data Analysis, 2012, vol. 56, issue 12, 4097-4110

Abstract: Recently, a great deal of attention has been paid to the stage-sequential process for the longitudinal data. A number of methods for analyzing stage-sequential processes have been derived from the family of finite mixture modeling. However, the research on the sequential process is rendered difficult by the fact that the number of latent components is not known a priori. To address this problem, we adopt the reversible jump MCMC (RJMCMC) and the Bayesian nonparametric approach, which provide a set of principles for the systematic model selection for the stage-sequential process. Using a latent class profile analysis, we evaluate the performance of RJMCMC and the Bayesian nonparametric method on the model selection problem.

Keywords: Dirichlet process; Finite mixture model; Latent class analysis; Longitudinal data; Reversible jump MCMC; Stage-sequential process (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312001417
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:12:p:4097-4110

DOI: 10.1016/j.csda.2012.03.015

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4097-4110