The effect of the nugget on Gaussian process emulators of computer models
Ioannis Andrianakis and
Peter G. Challenor
Computational Statistics & Data Analysis, 2012, vol. 56, issue 12, 4215-4228
Abstract:
The effect of a Gaussian process parameter known as the nugget, on the development of computer model emulators is investigated. The presence of the nugget results in an emulator that does not interpolate the data and attaches a non-zero uncertainty bound around them. The limits of this approximation are investigated theoretically, and it is shown that they can be as large as those of a least squares model with the same regression functions as the emulator, regardless of the nugget’s value. The likelihood of the correlation function parameters is also studied and two mode types are identified. Type I modes are characterised by an approximation error that is a function of the nugget and can therefore become arbitrarily small, effectively yielding an interpolating emulator. Type II modes result in emulators with a constant approximation error. Apart from a theoretical investigation of the limits of the approximation error, a practical method for automatically imposing restrictions on its extent is introduced. This is achieved by means of a penalty term that is added to the likelihood function, and controls the amount of unexplainable variability in the computer model. The main findings are illustrated on data from an Energy Balance climate model.
Keywords: Computer experiments; Ill conditioning; Interpolation; Approximation; Kriging (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312001879
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:12:p:4215-4228
DOI: 10.1016/j.csda.2012.04.020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().