EconPapers    
Economics at your fingertips  
 

Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm

F. Rigat and A. Mira

Computational Statistics & Data Analysis, 2012, vol. 56, issue 6, 1450-1467

Abstract: A novel class of interacting Markov chain Monte Carlo (MCMC) algorithms, hereby referred to as the Parallel Hierarchical Sampler (PHS), is developed and its mixing properties are assessed. PHS algorithms are modular MCMC samplers designed to produce reliable estimates for multi-modal and heavy-tailed posterior distributions. As such, PHS aims at benefitting statisticians whom, working on a wide spectrum of applications, are more focused on defining and refining models than constructing sophisticated sampling strategies. Convergence of a vanilla PHS algorithm is proved for the case of Metropolis–Hastings within-chain updates. The accuracy of this PHS kernel is compared with that of optimized single-chain and multiple-chain MCMC algorithms for multi-modal mixtures of multivariate Gaussian densities and for ‘banana-shaped’ heavy-tailed multivariate distributions. These examples show that PHS can yield a dramatic improvement in the precision of MCMC estimators over standard samplers. PHS is then applied to two realistically complex Bayesian model uncertainty scenarios. First, PHS is used to select a low number of meaningful predictors for a Gaussian linear regression model in the presence of high collinearity. Second, the posterior probability of survival trees approximated by PHS indicates that the number and size of liver metastases at the time of diagnosis are predictive of substantial differences in the survival distributions of colorectal cancer patients.

Keywords: Bayesian covariate selection; Heavy tails; Gaussian mixtures; Multi-modality; Parallel MCMC; Treed survival models (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731100418X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:56:y:2012:i:6:p:1450-1467

DOI: 10.1016/j.csda.2011.11.020

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1450-1467