Objective Bayesian higher-order asymptotics in models with nuisance parameters
Laura Ventura,
Nicola Sartori and
Walter Racugno
Computational Statistics & Data Analysis, 2013, vol. 60, issue C, 90-96
Abstract:
A higher-order approximation to the marginal posterior distribution for a scalar parameter of interest in the presence of nuisance parameters is proposed. The approximation is obtained using a matching prior. The procedure improves the normal first-order approximation and has several advantages. It does not require the elicitation on the nuisance parameters, neither numerical integration nor Monte Carlo simulation, and it enables us to perform accurate Bayesian inference even for small sample sizes. Numerical illustrations are given for models of practical interest, such as linear non-normal models and logistic regression. Finally, it is shown how the proposed approximation can routinely be applied in practice using results from likelihood asymptotics and the R package bundle hoa.
Keywords: Asymptotic expansion; Directed and modified directed likelihood; Matching prior; Modified profile likelihood; Tail area probability (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312003908
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:60:y:2013:i:c:p:90-96
DOI: 10.1016/j.csda.2012.10.022
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().