EconPapers    
Economics at your fingertips  
 

Generative models for functional data using phase and amplitude separation

J. Derek Tucker, Wei Wu and Anuj Srivastava

Computational Statistics & Data Analysis, 2013, vol. 61, issue C, 50-66

Abstract: Constructing generative models for functional observations is an important task in statistical functional analysis. In general, functional data contains both phase (or x or horizontal) and amplitude (or y or vertical) variability. Traditional methods often ignore the phase variability and focus solely on the amplitude variation, using cross-sectional techniques such as fPCA for dimensional reduction and data modeling. Ignoring phase variability leads to a loss of structure in the data and inefficiency in data models. This paper presents an approach that relies on separating the phase (x-axis) and amplitude (y-axis), then modeling these components using joint distributions. This separation, in turn, is performed using a technique called elastic shape analysis of curves that involves a new mathematical representation of functional data. Then, using individual fPCAs, one each for phase and amplitude components, it imposes joint probability models on principal coefficients of these components while respecting the nonlinear geometry of the phase representation space. These ideas are demonstrated using random sampling, for models estimated from simulated and real datasets, and show their superiority over models that ignore phase-amplitude separation. Furthermore, the generative models are applied to classification of functional data and achieve high performance in applications involving SONAR signals of underwater objects, handwritten signatures, and periodic body movements recorded by smart phones.

Keywords: Amplitude variability; Function alignment; Function principal component analysis; Functional data analysis; Generative model; Phase variability (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947312004227
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:61:y:2013:i:c:p:50-66

DOI: 10.1016/j.csda.2012.12.001

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:61:y:2013:i:c:p:50-66