Recent progress in the nonparametric estimation of monotone curves—With applications to bioassay and environmental risk assessment
Rabi Bhattacharya and
Lizhen Lin
Computational Statistics & Data Analysis, 2013, vol. 63, issue C, 63-80
Abstract:
Three recent nonparametric methodologies for estimating a monotone regression function F and its inverse F−1 are (1) the inverse kernel method DNP (Dette et al., 2005; Dette and Scheder, 2010), (2) the monotone spline (Kong and Eubank (2006)) and (3) the data adaptive method NAM (Bhattacharya and Lin, 2010, 2011), with roots in isotonic regression (Ayer et al., 1955; Bhattacharya and Kong, 2007). All three have asymptotically optimal error rates. In this article their finite sample performances are compared using extensive simulation from diverse models of interest, and by analysis of real data. Let there be m distinct values of the independent variable x among N observations y. The results show that if m is relatively small compared to N then generally the NAM performs best, while the DNP outperforms the other methods when m is O(N) unless there is a substantial clustering of the values of the independent variable x.
Keywords: Adaptive method; Bioassay application; Finite sample comparison; Monotone curves estimation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313000388
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:63:y:2013:i:c:p:63-80
DOI: 10.1016/j.csda.2013.01.023
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().