EconPapers    
Economics at your fingertips  
 

Entropy-based sliced inverse regression

Hideitsu Hino, Keigo Wakayama and Noboru Murata

Computational Statistics & Data Analysis, 2013, vol. 67, issue C, 105-114

Abstract: The importance of dimension reduction has been increasing according to the growth of the size of available data in many fields. An appropriate dimension reduction method of raw data helps to reduce computational time and to expose the intrinsic structure of complex data. Sliced inverse regression is a well-known dimension reduction method for regression, which assumes an elliptical distribution for the explanatory variable, and ingeniously reduces the problem of dimension reduction to a simple eigenvalue problem. Sliced inverse regression is based on the strong assumptions on the data distribution and the form of regression function, and there are a number of methods to relax or remove these assumptions to extend the applicability of the inverse regression method. However, each method is known to have its drawbacks either theoretically or empirically. To alleviate drawbacks in the existing methods, a dimension reduction method for regression based on the notion of conditional entropy minimization is proposed. Using entropy as a measure of dispersion of data, a low dimensional subspace is estimated without assuming any specific distribution nor any regression function. The proposed method is shown to perform comparable or superior to the conventional methods through experiments using artificial and real-world datasets.

Keywords: Sliced inverse regression; Dimension reduction; Entropy (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947313002028
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:67:y:2013:i:c:p:105-114

DOI: 10.1016/j.csda.2013.05.017

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:105-114