EconPapers    
Economics at your fingertips  
 

Non-parametric entropy estimators based on simple linear regression

Hideitsu Hino, Kensuke Koshijima and Noboru Murata

Computational Statistics & Data Analysis, 2015, vol. 89, issue C, 72-84

Abstract: Estimators for differential entropy are proposed. The estimators are based on the second order expansion of the probability mass around the inspection point with respect to the distance from the point. Simple linear regression is utilized to estimate the values of density function and its second derivative at a point. After estimating the values of the probability density function at each of the given sample points, by taking the empirical average of the negative logarithm of the density estimates, two entropy estimators are derived. Other entropy estimators which directly estimate entropy by linear regression, are also proposed. The proposed four estimators are shown to perform well through numerical experiments for various probability distributions.

Keywords: Entropy estimation; Non-parametric; Simple linear regression (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000791
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:89:y:2015:i:c:p:72-84

DOI: 10.1016/j.csda.2015.03.011

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:89:y:2015:i:c:p:72-84