Matrix completion discriminant analysis
Tong Tong Wu and
Kenneth Lange
Computational Statistics & Data Analysis, 2015, vol. 92, issue C, 115-125
Abstract:
Matrix completion discriminant analysis (MCDA) is designed for semi-supervised learning where the rate of missingness is high and predictors vastly outnumber cases. MCDA operates by mapping class labels to the vertices of a regular simplex. With c classes, these vertices are arranged on the surface of the unit sphere in c−1 dimensional Euclidean space. Because all pairs of vertices are equidistant, the classes are treated symmetrically. To assign unlabeled cases to classes, the data is entered into a large matrix (cases along rows and predictors along columns) that is augmented by vertex coordinates stored in the last c−1 columns. Once the matrix is constructed, its missing entries can be filled in by matrix completion. To carry out matrix completion, one minimizes a sum of squares plus a nuclear norm penalty. The simplest solution invokes an MM algorithm and singular value decomposition. Choice of the penalty tuning constant can be achieved by cross validation on randomly withheld case labels. Once the matrix is completed, an unlabeled case is assigned to the class vertex closest to the point deposited in its last c−1 columns. A variety of examples drawn from the statistical literature demonstrate that MCDA is competitive on traditional problems and outperforms alternatives on large-scale problems.
Keywords: Classification; Missing observations; MM algorithm; Semi-supervised learning; Singular value decomposition (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315001449
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:92:y:2015:i:c:p:115-125
DOI: 10.1016/j.csda.2015.06.006
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().