Robust estimation of precision matrices under cellwise contamination
G. Tarr,
S. Müller and
N.C. Weber
Computational Statistics & Data Analysis, 2016, vol. 93, issue C, 404-420
Abstract:
There is a great need for robust techniques in data mining and machine learning contexts where many standard techniques such as principal component analysis and linear discriminant analysis are inherently susceptible to outliers. Furthermore, standard robust procedures assume that less than half the observation rows of a data matrix are contaminated, which may not be a realistic assumption when the number of observed features is large. The problem of estimating covariance and precision matrices under cellwise contamination is investigated. The use of a robust pairwise covariance matrix as an input to various regularisation routines, such as the graphical lasso, QUIC and CLIME is considered. A method that transforms a symmetric matrix of pairwise covariances to the nearest covariance matrix is used to ensure the input covariance matrix is positive semidefinite. The result is a potentially sparse precision matrix that is resilient to moderate levels of cellwise contamination. Since this procedure is not based on subsampling it scales well as the number of variables increases.
Keywords: Precision matrix; Covariance matrix; Robust estimation; Data mining (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000444
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:93:y:2016:i:c:p:404-420
DOI: 10.1016/j.csda.2015.02.005
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().