An exact approach to Bayesian sequential change point detection
Eric Ruggieri and
Marcus Antonellis
Computational Statistics & Data Analysis, 2016, vol. 97, issue C, 71-86
Abstract:
Change point models seek to fit a piecewise regression model with unknown breakpoints to a data set whose parameters are suspected to change through time. However, the exponential number of possible solutions to a multiple change point problem requires an efficient algorithm if long time series are to be analyzed. A sequential Bayesian change point algorithm is introduced that provides uncertainty bounds on both the number and location of change points. The algorithm is able to quickly update itself in linear time as each new data point is recorded and uses the exact posterior distribution to infer whether or not a change point has been observed. Simulation studies illustrate how the algorithm performs under various parameter settings, including detection speeds and error rates, and allow for comparison with several existing multiple change point algorithms. The algorithm is then used to analyze two real data sets, including global surface temperature anomalies over the last 130 years.
Keywords: Dynamic programming; Exact Bayesian inference; Global temperature anomalies; Multiple change point; Piecewise regression (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315002935
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:97:y:2016:i:c:p:71-86
DOI: 10.1016/j.csda.2015.11.010
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().