EconPapers    
Economics at your fingertips  
 

A flexible zero-inflated model to address data dispersion

Kimberly F. Sellers and Andrew Raim

Computational Statistics & Data Analysis, 2016, vol. 99, issue C, 68-80

Abstract: Excess zeroes are often thought of as a cause of data over-dispersion (i.e. when the variance exceeds the mean); this claim is not entirely accurate. In actuality, excess zeroes reduce the mean of a dataset, thus inflating the dispersion index (i.e. the variance divided by the mean). While this results in an increased chance for data over-dispersion, the implication is not guaranteed. Thus, one should consider a flexible distribution that not only can account for excess zeroes, but can also address potential over- or under-dispersion. A zero-inflated Conway–Maxwell–Poisson (ZICMP) regression allows for modeling the relationship between explanatory and response variables, while capturing the effects due to excess zeroes and dispersion. This work derives the ZICMP model and illustrates its flexibility, extrapolates the corresponding likelihood ratio test for the presence of significant data dispersion, and highlights various statistical properties and model fit through several examples.

Keywords: Conway–Maxwell–Poisson; Over-dispersion; Under-dispersion; Excess zeroes (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316000165
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:99:y:2016:i:c:p:68-80

DOI: 10.1016/j.csda.2016.01.007

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:99:y:2016:i:c:p:68-80