Particle filtering, learning, and smoothing for mixed-frequency state-space models
Markus Leippold () and
Hanlin Yang
Econometrics and Statistics, 2019, vol. 12, issue C, 25-41
Abstract:
A particle filter approach for general mixed-frequency state-space models is considered. It employs a backward smoother to filter high-frequency state variables from low-frequency observations. Moreover, it preserves the sequential nature of particle filters, allows for non-Gaussian shocks and nonlinear state-measurement relation, and alleviates the concern over sample degeneracy. Simulation studies show that it outperforms the commonly used state-augmented approach for mixed-frequency data for filtering and smoothing. In an empirical exercise, predictive mixed-frequency regressions are employed for Treasury bond and US dollar index returns with quarterly predictors and monthly stochastic volatility. Stochastic volatility improves model inference and forecasting power in a mixed-frequency setup but not for quarterly aggregate models.
Keywords: Mixed-frequency; State-space models; Particle filtering; Backward smoothing; Stochastic volatility; Return predictability (search for similar items in EconPapers)
JEL-codes: C13 C32 C53 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306219300437
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:12:y:2019:i:c:p:25-41
DOI: 10.1016/j.ecosta.2019.07.001
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().