Stable Randomized Generalized Autoregressive Conditional Heteroskedastic Models
Jhames M. Sampaio and
Pedro A. Morettin
Econometrics and Statistics, 2020, vol. 15, issue C, 67-83
Abstract:
The class of Randomized Generalized Autoregressive Conditional Heteroskedastic (R-GARCH) models represents a generalization of the GARCH models, adding a random term to the volatility with the purpose to better accommodate the heaviness of the tails expected for returns in the financial field. In fact, it is assumed that this term has stable distribution. Allowing both, returns and volatility, to have stable distribution, a new class of models to describe volatility arises: Stable Randomized Generalized Autoregressive Conditional Heteroskedastic Models (SR-GARCH). The indirect inference method is proposed to estimate the SR-GARCH parameters, theoretical results concerning dependence structure are obtained. Simulations and an empirical application are presented.
Keywords: Indirect estimation; Stable distribution; SR-GARCH models; Autocovariation; Time series (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306218300947
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:15:y:2020:i:c:p:67-83
DOI: 10.1016/j.ecosta.2018.11.002
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().