Data segmentation algorithms: Univariate mean change and beyond
Haeran Cho and
Claudia Kirch
Econometrics and Statistics, 2024, vol. 30, issue C, 76-95
Abstract:
Data segmentation a.k.a. multiple change point analysis has received considerable attention due to its importance in time series analysis and signal processing, with applications in a variety of fields including natural and social sciences, medicine, engineering and finance. The first part reviews the existing literature on the canonical data segmentation problem which aims at detecting and localising multiple change points in the mean of univariate time series. An overview of popular methodologies is provided on their computational complexity and theoretical properties. In particular, the theoretical discussion focuses on the separation rate relating to which change points are detectable by a given procedure, and the localisation rate quantifying the precision of corresponding change point estimators, and a distinction is made whether a homogeneous or multiscale viewpoint has been adopted in their derivation. It is further highlighted that the latter viewpoint provides the most general setting for investigating the optimality of data segmentation algorithms.
Keywords: Data segmentation; Change point analysis; Time series analysis; High-dimensional statistics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221001234
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:30:y:2024:i:c:p:76-95
DOI: 10.1016/j.ecosta.2021.10.008
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().