Semiparametric Averaging of Nonlinear Marginal Logistic Regressions and Forecasting for Time Series Classification
Rong Peng and
Zudi Lu
Econometrics and Statistics, 2024, vol. 31, issue C, 19-37
Abstract:
Binary classification is an important issue in many applications but mostly studied for independent data in the literature. A binary time series classification is investigated by proposing a semiparametric procedure named “Model Averaging nonlinear MArginal LOgistic Regressions” (MAMaLoR) for binary time series data based on the time series information of predictor variables. The procedure involves approximating the logistic multivariate conditional regression function by combining low-dimensional non-parametric nonlinear marginal logistic regressions, in the sense of Kullback-Leibler distance. A time series conditional likelihood method is suggested for estimating the optimal averaging weights together with local maximum likelihood estimations of the nonparametric marginal time series logistic (auto)regressions. The asymptotic properties of the procedure are established under mild conditions on the time series observations that are of β-mixing property. The procedure is less computationally demanding and can avoid the “curse of dimensionality” for, and be easily applied to, high dimensional lagged information based nonlinear time series classification forecasting. The performances of the procedure are further confirmed both by Monte-Carlo simulation and an empirical study for market moving direction forecasting of the financial FTSE 100 index data.
Keywords: Binary time series classification; Forecasting; Model average; MAMaLoR; Logistic marginal regression; Semi-parametric likelihood estimation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221001325
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:31:y:2024:i:c:p:19-37
DOI: 10.1016/j.ecosta.2021.11.001
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().