EconPapers    
Economics at your fingertips  
 

Bias correction for Vandermonde low-rank approximation

Antonio Fazzi, Alexander Kukush and Ivan Markovsky

Econometrics and Statistics, 2024, vol. 31, issue C, 38-48

Abstract: The low-rank approximation problem, that is the problem of approximating a given matrix with a matrix of lower rank, appears in many scientific fields. In some applications the given matrix is structured and the approximation is required to have the same structure. Examples of linear structures are Hankel, Toeplitz, and Sylvester. Currently, there are only a few results for nonlinearly structured low-rank approximation problems. The problem of Vandermonde structured low-rank approximation is considered. The high condition number of the Vandermonde matrix, in combination with the noise in the data, makes the problem challenging. A numerical method based on a bias correction procedure is proposed and its properties are demonstrated by simulation. The performance of the method is illustrated on numerical results.

Keywords: Vandermonde matrix; Bias removal; Adjusted least squares; Structured matrix perturbation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221001088
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:31:y:2024:i:c:p:38-48

DOI: 10.1016/j.ecosta.2021.09.001

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:31:y:2024:i:c:p:38-48