Quasi Maximum Likelihood Estimation of Value at Risk and Expected Shortfall
Leopoldo Catania and
Alessandra Luati
Econometrics and Statistics, 2025, vol. 33, issue C, 23-34
Abstract:
Quasi maximum likelihood estimation of Value at Risk (VaR) and Expected Shortfall (ES) is discussed. The reference likelihood is that of a location-scale asymmetric Laplace distribution, related to a family of loss functions that lead to strictly consistent scoring functions for joint estimation of VaR and ES. The case of zero mean processes is considered, where quasi maximum likelihood estimators (QMLE) are consistent and asymptotically normal, as well as the case of non-zero mean processes, where quasi maximum likelihood estimators lead to inconsistent estimates due to lack of identification. In the latter situation, the asymptotic properties of two stage quasi maximum likelihood estimators (2SQMLE) are derived. QMLE and 2SQMLE are related with sample and M-estimators and compared in terms of asymptotic efficiency. A simulation study investigates the finite sample properties of QMLE, 2SQMLE, sample and M-estimators of expected shortfall.
Keywords: Asymmetric Laplace distribution; Scoring functions; Quantiles; Elicitability; Risk measures (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221000976
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:33:y:2025:i:c:p:23-34
DOI: 10.1016/j.ecosta.2021.08.003
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().