EconPapers    
Economics at your fingertips  
 

Sparse simulation-based estimator built on quantiles

Paola Stolfi, Mauro Bernardi and Lea Petrella

Econometrics and Statistics, 2025, vol. 34, issue C, 32-43

Abstract: The method of simulated quantiles is extended to a general multivariate framework and to provide sparse estimation of the scaling matrix. The method is based on the minimisation of a distance between appropriate statistics evaluated on the true and synthetic data simulated from the postulated model. Those statistics are functions of the quantiles providing an effective way to deal with distributions that do not admit moments of any order like the α–Stable or the Tukey lambda distribution. The lack of a natural ordering represents the major challenge for the extension of the method to the multivariate framework, which is addressed by considering the notion of projectional quantile. The SCAD ℓ1–penalty is then introduced in order to achieve sparse estimation of the scaling matrix which is mostly responsible for the curse of dimensionality. The asymptotic properties of the proposed estimator have been discussed and the method is illustrated and tested on several synthetic datasets simulated from the Elliptical Stable distribution for which alternative methods are recognised to perform poorly.

Keywords: directional quantiles; method of simulated quantiles; sparse regularisation; SCAD; Elliptical Stable distribution (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306222000065
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:34:y:2025:i:c:p:32-43

DOI: 10.1016/j.ecosta.2022.01.006

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-08
Handle: RePEc:eee:ecosta:v:34:y:2025:i:c:p:32-43