A data-driven predictive model for residential mobility in Australia – A generalised linear mixed model for repeated measured binary data
Mohammad-Reza Namazi-Rad,
Payam Mokhtarian,
Nagesh Shukla and
Albert Munoz
Journal of choice modelling, 2016, vol. 20, issue C, 49-60
Abstract:
Household relocation modelling is an integral part of the Government planning process as residential movements influence the demand for community facilities and services. This study will address the problem of modelling residential relocation choice by estimating a logit-link class model. The proposed model estimates the probability of an event which triggers household relocation. The attributes considered in this study are: requirement for bedrooms, employment status, income status, household characteristics, and tenure (i.e. duration living at the current location). Accurate prediction of household relocations for population units should rely on real world observations. In this study, a longitudinal survey data gathered in the Household, Income and Labour Dynamics in Australia (HILDA) program is used for modelling purposes. The HILDA dataset includes socio-demographic information such as general health situation and well-being, lifestyle changes, residential mobility, income and welfare dynamics, and labour market dynamics collected from the sampled individuals and households. The technique presented in this paper links possible changes in households' socio-demographic characteristics to the probability of residential relocation by developing a mixed effects discrete-choice logit model (MEDCLM) for longitudinal binary data using the HILDA dataset. The proposed model captures the effect of repeated measurements together with the area-specific random effects.
Keywords: Behavioural model; HILDA data; Household relocation modelling; Mixed effects discrete-choice logit model (MEDCLM); Repeated measurements (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1755534516300379
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:20:y:2016:i:c:p:49-60
DOI: 10.1016/j.jocm.2016.04.006
Access Statistics for this article
Journal of choice modelling is currently edited by S. Hess and J.M. Rose
More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().