Setting SMART targets for industrial energy use and industrial energy efficiency
Martijn G. Rietbergen and
Kornelis Blok
Energy Policy, 2010, vol. 38, issue 8, 4339-4354
Abstract:
Industrial energy policies often require the setting of quantitative targets to reduce energy use and/or greenhouse gas emissions. In this paper a taxonomy has been developed for categorizing SMART industrial energy use or greenhouse gas emission reduction targets. The taxonomy includes volume reduction targets, physical efficiency improvement targets, economic intensity improvement targets and economic targets. This paper also provides a comprehensive overview of targets for industrial energy use or greenhouse gas emission reductions at sector or firm level in past, current and proposed future policies worldwide. This overview includes approximately 50 different emission permit systems, voluntary or negotiated agreement schemes and emission trading systems. Finally, the paper includes an assessment of the various types of targets. The target types are compared with respect to the certainty of the environmental outcome and compliance costs, the targets' relevance for the public and for industry and their environmental integrity, as well as their complexity and potential for comparison.
Keywords: Efficiency; targets; Intensity; targets; Volume; targets (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00252-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:38:y:2010:i:8:p:4339-4354
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().