The relative impacts of distributed and centralized generation of electricity on local air quality in the South Coast Air Basin of California
Qiguo Jing and
Akula Venkatram
Energy Policy, 2011, vol. 39, issue 9, 4999-5007
Abstract:
This paper examines the air quality impact of using distributed generation (DG) to satisfy future growth in power demand in the South Coast Air Basin of Los Angeles, relative to the impact when the demand is met by expanding current central generation (CG) capacity. The impact of decreasing boiler emissions by capturing the waste heat from DGs is not examined. The air quality impacts of these two alternate scenarios are quantified in terms of hourly maximum ground-level and annually averaged primary NOx concentrations, which are estimated using AERMOD. This study focuses on the impact of primary emissions at source-receptor distances of tens of kilometers. We find that the shift to DGs has the potential for decreasing maximum hourly impacts of power generation in the vicinity of the DGs. The maximum hourly concentration is reduced from 25 to 6Â ppb if DGs rather than CGs are used to generate power. However, the annually averaged concentrations are likely to be higher than for the scenario in which existing CGs are used to satisfy power demand growth. Future DG penetration will add an annual average of 0.1Â ppb to the current basin average, 20Â ppb, while expanding existing CGs will add 0.05Â ppb.
Keywords: Local; air; quality; impact; Distributed; generation; Central; generation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301421511004691
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:enepol:v:39:y:2011:i:9:p:4999-5007
Access Statistics for this article
Energy Policy is currently edited by N. France
More articles in Energy Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().