EconPapers    
Economics at your fingertips  
 

Anti-Money Laundering: Using data visualization to identify suspicious activity

Kishore Singh and Peter Best

International Journal of Accounting Information Systems, 2019, vol. 34, issue C, -

Abstract: Annually, money laundering activities threaten the global economy. Proceeds of these activities may be used to fund further criminal activities and to undermine the integrity of financial systems worldwide. For these reasons, money laundering is recognized as a critical risk in many countries. There is an emerging interest from both researchers and practitioners concerning the use of software tools to enhance detection of money laundering activities. In the current economic environment, regulators struggle to stay ahead of the latest scam, and financial institutions are challenged to ensure that they can identify and stop criminal activities, while ensuring that legitimate customers are served more effectively and efficiently. Effective technological solutions are an essential element in the fight against money laundering. Improved data and analytics are key in assisting investigators to focus on suspicious activities. Continually evolving regulations, together with recent instances of money laundering violations by some of the largest financial institutions, have highlighted the need for better technology in managing anti-money laundering activities. This study explores the use of visualization techniques that may assist in efficient identification of patterns of money laundering activities. It demonstrates how link analysis may be applied in detecting suspicious bank transactions. A prototype application (AML2ink) is used for proof-of-concept purposes.

Keywords: Anti-Money Laundering; visualization; link analysis; money laundering symptoms (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S146708951730043X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ijoais:v:34:y:2019:i:c:3

DOI: 10.1016/j.accinf.2019.06.001

Access Statistics for this article

International Journal of Accounting Information Systems is currently edited by S.V. Grabski

More articles in International Journal of Accounting Information Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ijoais:v:34:y:2019:i:c:3