Optimal proportional reinsurance and investment with transaction costs, I: Maximizing the terminal wealth
Xin-Li Zhang,
Ke-Cun Zhang and
Xing-Jiang Yu
Insurance: Mathematics and Economics, 2009, vol. 44, issue 3, 473-478
Abstract:
We consider a problem of optimal reinsurance and investment with multiple risky assets for an insurance company whose surplus is governed by a linear diffusion. The insurance company's risk can be reduced through reinsurance, while in addition the company invests its surplus in a financial market with one risk-free asset and n risky assets. In this paper, we consider the transaction costs when investing in the risky assets. Also, we use Conditional Value-at-Risk (CVaR) to control the whole risk. We consider the optimization problem of maximizing the expected exponential utility of terminal wealth and solve it by using the corresponding Hamilton-Jacobi-Bellman (HJB) equation. Explicit expression for the optimal value function and the corresponding optimal strategies are obtained.
Keywords: Conditional; value-at-risk; Exponential; utility; Hamilton-Jacobi-Bellman; equation; Proportional; reinsurance; Transaction; costs (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00006-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:44:y:2009:i:3:p:473-478
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().