Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence
Qihe Tang and
Li Wei
Insurance: Mathematics and Economics, 2010, vol. 46, issue 1, 19-31
Abstract:
We study the asymptotic behavior of the Gerber-Shiu expected discounted penalty function in the renewal risk model. Under the assumption that the claim-size distribution has a convolution-equivalent density function, which allows both heavy-tailed and light-tailed cases, we establish some asymptotic formulas for the Gerber-Shiu function with a fairly general penalty function. These formulas become completely transparent in the compound Poisson risk model or for certain choices of the penalty function in the renewal risk model. A by-product of this work is an extension of the Wiener-Hopf factorization to include the times of ascending and descending ladders in the continuous-time renewal risk model.
Keywords: Asymptotics; Convolution; equivalence; Duality; principle; Gerber-Shiu; function; Renewal; risk; model; Wiener-Hopf; factorization (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00096-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:46:y:2010:i:1:p:19-31
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().