On the Gerber-Shiu function and change of measure
Hanspeter Schmidli
Insurance: Mathematics and Economics, 2010, vol. 46, issue 1, 3-11
Abstract:
We consider several models for the surplus of an insurance company mainly under some light-tail assumptions. We are interested in the expected discounted penalty at ruin. By a change of measure we remove the discounting, which simplifies the expression. This leads to (defective) renewal equations as they had been found by different methods in the literature. If we use the change of measure such that ruin becomes certain, the renewal equations simplify to ordinary renewal equations. This helps to discuss the asymptotics as the initial capital goes to infinity. For phase-type claim sizes, explicit formulae can be derived.
Keywords: Expected; discounted; penalty; function; Change; of; measure; Laplace; transform; Sparre-Andersen; risk; model; Markov-modulated; risk; model; Bjork-Grandell; risk; model; Perturbed; risk; model; Lump; sum; premia (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00047-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:46:y:2010:i:1:p:3-11
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().