Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance
Yichun Chi
Insurance: Mathematics and Economics, 2010, vol. 46, issue 2, 385-396
Abstract:
In this paper, we extend the Cramér-Lundberg risk model perturbed by diffusion to incorporate the jumps of surplus investment return. Under the assumption that the jump of surplus investment return follows a compound Poisson process with Laplace distributed jump sizes, we obtain the explicit closed-form expression of the resulting Gerber-Shiu expected discounted penalty (EDP) function through the Wiener-Hopf factorization technique instead of the integro-differential equation approach. Especially, when the claim distribution is of Phase-type, the expression of the EDP function is simplified even further as a compact matrix-type form. Finally, the financial applications include pricing barrier option and perpetual American put option and determining the optimal capital structure of a firm with endogenous default.
Keywords: Gerber-Shiu; expected; discounted; penalty; function; Wiener-Hopf; factorization; Perturbed; compound; Poisson; risk; process; Laplace; distribution; Perpetual; American; put; option; Barrier; option; Optimal; capital; structure (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00156-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:46:y:2010:i:2:p:385-396
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().