Parameter estimation of a bivariate compound Poisson process
Habib Esmaeili and
Claudia Klüppelberg
Insurance: Mathematics and Economics, 2010, vol. 47, issue 2, 224-233
Abstract:
In this article, we review the concept of a Lévy copula to describe the dependence structure of a bivariate compound Poisson process. In this first statistical approach we consider a parametric model for the Lévy copula and estimate the parameters of the full dependent model based on a maximum likelihood approach. This approach ensures that the estimated model remains in the class of multivariate compound Poisson processes. A simulation study investigates the small sample behaviour of the MLEs, where we also suggest a new simulation algorithm. Finally, we apply our method to Danish fire insurance data.
Keywords: Dependence; modelling; Levy; copula; Levy; measure; Levy; process; Maximum; likelihood; estimation; Multivariate; compound; Poisson; process (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00044-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:47:y:2010:i:2:p:224-233
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().