A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process
Peter Diko and
Miguel Usábel
Insurance: Mathematics and Economics, 2011, vol. 49, issue 1, 126-131
Abstract:
A generalization of the Cramér-Lundberg risk model perturbed by a diffusion is proposed. Aggregate claims of an insurer follow a compound Poisson process and premiums are collected at a constant rate with additional random fluctuation. The insurer is allowed to invest the surplus into a risky asset with volatility dependent on the level of the investment, which permits the incorporation of rational investment strategies as proposed by Berk and Green (2004). The return on investment is modulated by a Markov process which generalizes previously studied settings for the evolution of the interest rate in time. The Gerber-Shiu expected penalty-reward function is studied in this context, including ruin probabilities (a first-passage problem) as a special case. The second order integro-differential system of equations that characterizes the function of interest is obtained. As a closed-form solution does not exist, a numerical procedure based on the Chebyshev polynomial approximation through a collocation method is proposed. Finally, some examples illustrating the procedure are presented.
Keywords: Expected; penalty-reward; function; Markov-modulated; process; Jump-diffusion; process; Volterra; integro-differential; system; of; equations; IM11; IM13 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668711000382
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:49:y:2011:i:1:p:126-131
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().