Minimal cost of a Brownian risk without ruin
Shangzhen Luo and
Michael Taksar
Insurance: Mathematics and Economics, 2012, vol. 51, issue 3, 685-693
Abstract:
In this paper, we study an optimal stochastic control problem for an insurance company whose surplus process is modeled by a Brownian motion with drift (the diffusion approximation model). The company can purchase reinsurance to lower its risk and receive cash injections at discrete times to avoid ruin. Proportional reinsurance and excess-of-loss reinsurance are considered. The objective is to find an optimal reinsurance and cash injection strategy that minimizes the total cost to keep the surplus process non-negative (without ruin). Here the cost function is defined as the total discounted value of the injections. The minimal cost function is found explicitly by solving the according quasi-variational inequalities (QVIs). Its associated optimal reinsurance-injection control policy is also found.
Keywords: Regular-impulse control; Diffusion approximation; Quasi-variational inequalities; Capital injection; Reinsurance; IM13; IE50; IM52 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668712001114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:51:y:2012:i:3:p:685-693
DOI: 10.1016/j.insmatheco.2012.09.006
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().