A nonparametric approach to calculating value-at-risk
Ramon Alemany,
Catalina Bolancé and
Montserrat Guillen
Insurance: Mathematics and Economics, 2013, vol. 52, issue 2, 255-262
Abstract:
A method to estimate an extreme quantile that requires no distributional assumptions is presented. The approach is based on transformed kernel estimation of the cumulative distribution function (cdf). The proposed method consists of a double transformation kernel estimation. We derive optimal bandwidth selection methods that have a direct expression for the smoothing parameter. The bandwidth can accommodate to the given quantile level. The procedure is useful for large data sets and improves quantile estimation compared to other methods in heavy tailed distributions. Implementation is straightforward and R programs are available.
Keywords: Kernel estimation; Bandwidth selection; Quantile; Risk measures (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668713000048
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:52:y:2013:i:2:p:255-262
DOI: 10.1016/j.insmatheco.2012.12.008
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().