The choice of sample size for mortality forecasting: A Bayesian learning approach
Hong Li (),
Anja De Waegenaere () and
Bertrand Melenberg
Insurance: Mathematics and Economics, 2015, vol. 63, issue C, 153-168
Abstract:
Forecasted mortality rates using mortality models proposed in the recent literature are sensitive to the sample size. In this paper we propose a method based on Bayesian learning to determine model-specific posterior distributions of the sample sizes. In particular, the sample size is included as an extra parameter in the parameter space of the mortality model, and its posterior distribution is obtained based on historical performance for different forecast horizons up to 20 years. Age- and gender-specific posterior distributions of sample sizes are computed. Our method is applicable to a large class of linear mortality models. As illustration, we focus on the first generation of the Lee–Carter model and the Cairns–Blake–Dowd model. Our method is applied to US and Dutch data. For both countries we find highly concentrated posterior distributions of the sample size that are gender- and age-specific. In the out-of-sample forecast analysis, the Bayesian model outperforms the original mortality models with fixed sample sizes in the majority of cases.
Keywords: Lee–Carter model; Cairns–Blake–Dowd model; Gibbs sampling; US and Dutch data; Linear mortality models (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715000566
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:63:y:2015:i:c:p:153-168
DOI: 10.1016/j.insmatheco.2015.03.024
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().