The loss given default of a low-default portfolio with weak contagion
Li Wei and
Zhongyi Yuan
Insurance: Mathematics and Economics, 2016, vol. 66, issue C, 113-123
Abstract:
In this paper we study the loss given default (LGD) of a low default portfolio (LDP), assuming that there is weak credit contagion among the obligors. We characterize the credit contagion by a Sarmanov dependence structure of the risk factors that drive the obligors’ default, where the risk factors are assumed to be heavy tailed. From a new perspective of asymptotic analysis, we derive a limiting distribution for the LGD. As a consequence, an approximation for the entire distribution, in contrast to just the tail behavior, of the LGD is obtained. We show numerical examples to demonstrate the limiting distribution. We also discuss possible applications of the limiting distribution to the calculation of moments and the Value at Risk (VaR) of the LGD.
Keywords: Asymptotic analysis; Asymptotic (in)dependence; Credit contagion; Default probability; Loss given default; Low-default portfolio; Risk measure; Sarmanov distribution (search for similar items in EconPapers)
JEL-codes: G22 G23 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715301694
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:66:y:2016:i:c:p:113-123
DOI: 10.1016/j.insmatheco.2015.10.005
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().