EconPapers    
Economics at your fingertips  
 

Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance

Andreas Bayerstadler, Linda van Dijk and Fabian Winter

Insurance: Mathematics and Economics, 2016, vol. 71, issue C, 244-252

Abstract: Healthcare fraud and abuse are a serious challenge to healthcare payers and to the entire society. This article presents a predictive model for fraud and abuse detection in health insurance based on a training dataset of manually reviewed claims. The goal of the analysis is to predict different fraud and abuse probabilities for new invoices. The prediction is based on a wide framework of fraud and abuse reports which examine the behavior of medical providers and insured members by measuring systematic deviation from usual patterns in medical claims data. We show that models which directly use the results of the reports as model covariates do not exploit the full potential in terms of predictive quality. Instead, we propose a multinomial Bayesian latent variable model which summarizes behavioral patterns in latent variables, and predicts different fraud and abuse probabilities. The estimation of model parameters is based on a Markov Chain Monte Carlo (MCMC) algorithm using Bayesian shrinkage techniques. The presented approach improves the identification of fraudulent and abusive claims compared to different benchmark approaches.

Keywords: Fraud and abuse detection; Health insurance; Predictive model; Bayes; Latent variable (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668715302845
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:71:y:2016:i:c:p:244-252

DOI: 10.1016/j.insmatheco.2016.09.013

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:71:y:2016:i:c:p:244-252