A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting
Stephen Haben and
Georgios Giasemidis
International Journal of Forecasting, 2016, vol. 32, issue 3, 1017-1022
Abstract:
We present a model for generating probabilistic forecasts that combines the kernel density estimation (KDE) and quantile regression techniques, as part of the probabilistic load forecasting track of the Global Energy Forecasting Competition 2014. Initially, the KDE method is implemented with a time-decay parameter, but we later improve this method by conditioning on the temperature or period of the week variables in order to provide more accurate forecasts. Secondly, we develop a simple but effective quantile regression forecast. The novel aspects of our methodology are two-fold. First, we introduce symmetry into the time-decay parameter of the kernel density estimation based forecast. Second, we combine three probabilistic forecasts with different weights for different periods of the month.
Keywords: Probabilistic load forecast; Kernel density estimation; Quantile regression; GEFCom2014 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207015001399
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:3:p:1017-1022
DOI: 10.1016/j.ijforecast.2015.11.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().