EconPapers    
Economics at your fingertips  
 

K-nearest neighbors for GEFCom2014 probabilistic wind power forecasting

Ekaterina Mangalova and Olesya Shesterneva

International Journal of Forecasting, 2016, vol. 32, issue 3, 1067-1073

Abstract: The paper deals with a forecasting procedure that aims to predict the probabilistic distribution of wind power generation. The k-nearest neighbors algorithm is adapted for this probabilistic forecasting task. It allows quantiles to be estimated without requiring assumptions as to the probability distribution. The influences of several factors (wind speed, wind direction and hour) on the normalized wind power are investigated. The feasibility of the approach is demonstrated through the probabilistic wind power forecasting track of the Global Energy Forecasting Competition 2014.

Keywords: Probabilistic forecasting; Nonparametric smoothing; Quantile estimation; Distance metric; Optimization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207015001429
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:3:p:1067-1073

DOI: 10.1016/j.ijforecast.2015.11.007

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:32:y:2016:i:3:p:1067-1073