Forecasting stochastic processes using singular spectrum analysis: Aspects of the theory and application
M. Atikur Rahman Khan and
Donald Poskitt
International Journal of Forecasting, 2017, vol. 33, issue 1, 199-213
Abstract:
This paper presents theoretical results on the properties of forecasts obtained by using singular spectrum analysis to forecast time series that are realizations of stochastic processes. The mean squared forecast errors are derived under broad regularity conditions, and it is shown that, in practice, the forecasts obtained will converge to their population ensemble counterparts. The theoretical results are illustrated by examining the performances of singular spectrum analysis forecasts when applied to autoregressive processes and a random walk process. Simulation experiments suggest that the asymptotic properties developed are reflected in the behaviour of observed finite samples. Empirical applications using real world data sets indicate that forecasts based on singular spectrum analysis are competitive with other methods currently in vogue.
Keywords: Linear recurrent formula; Mean squared forecast error; Signal dimension; Window length (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016300085
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:33:y:2017:i:1:p:199-213
DOI: 10.1016/j.ijforecast.2016.01.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().