EconPapers    
Economics at your fingertips  
 

Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models

Abolfazl Safikhani, Camille Kamga, Sandeep Mudigonda, Sabiheh Sadat Faghih and Bahman Moghimi

International Journal of Forecasting, 2020, vol. 36, issue 3, 1138-1148

Abstract: The spatio-temporal variation in the demand for transportation, particularly taxis, in the highly dynamic urban space of a metropolis such as New York City is impacted by various factors such as commuting, weather, road work and closures, disruptions in transit services, etc. This study endeavors to explain the user demand for taxis through space and time by proposing a generalized spatio-temporal autoregressive (STAR) model. It deals with the high dimensionality of the model by proposing the use of LASSO-type penalized methods for tackling parameter estimation. The forecasting performance of the proposed models is measured using the out-of-sample mean squared prediction error (MSPE), and the proposed models are found to outperform other alternative models such as vector autoregressive (VAR) models. The proposed modeling framework has an easily interpretable parameter structure and is suitable for practical application by taxi operators. The efficiency of the proposed model also helps with model estimation in real-time applications.

Keywords: STARMA; Spatio-temporal; Time series; Taxi demand prediction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301468
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:3:p:1138-1148

DOI: 10.1016/j.ijforecast.2018.10.001

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:36:y:2020:i:3:p:1138-1148