Automatic Interpretable Retail forecasting with promotional scenarios
Özden Gür Ali and
Ragıp Gürlek
International Journal of Forecasting, 2020, vol. 36, issue 4, 1389-1406
Abstract:
Budgeting and planning processes require medium-term sales forecasts with marketing scenarios. The complexity in modern retailing necessitates consistent, automatic forecasting and insight generation. Remedies to the high dimensionality problem have drawbacks; black box machine learning methods require voluminous data and lack insights, while regularization may bias causal estimates in interpretable models.
Keywords: Causality; Decomposition; Marketing; Multivariate time series; Panel data; Machine learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207020300200
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:4:p:1389-1406
DOI: 10.1016/j.ijforecast.2020.02.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().