Linking words in economic discourse: Implications for macroeconomic forecasts
J. Daniel Aromi
International Journal of Forecasting, 2020, vol. 36, issue 4, 1517-1530
Abstract:
This paper develops indicators of unstructured press information by exploiting word vector representations. A model is trained using a corpus covering 90 years of Wall Street Journal content. The information content of the indicators is assessed through business cycle forecast exercises. The vector representations can learn meaningful word associations that are exploited to construct indicators of uncertainty. In-sample and out-of-sample forecast exercises show that the indicators contain valuable information regarding future economic activity. The combination of indices associated with different subjective states (e.g., uncertainty, fear, pessimism) results in further gains in information content. The documented performance is unmatched by previous dictionary-based word counting techniques proposed in the literature.
Keywords: Macroeconomic forecasting; Text-based data; Combining forecasts; Natural language processing; Uncertainty (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207019302511
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:36:y:2020:i:4:p:1517-1530
DOI: 10.1016/j.ijforecast.2019.12.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().