Forecasting multiparty by-elections using Dirichlet regression
Chris Hanretty
International Journal of Forecasting, 2021, vol. 37, issue 4, 1666-1676
Abstract:
By-elections, or special elections, play an important role in many democracies – but whilst there are multiple forecasting models for national elections, there are no such models for multiparty by-elections. Multiparty by-elections present particular analytic problems related to the compositional character of the data and structural zeros where parties fail to stand. I model party vote shares using Dirichlet regression, a technique suited for compositional data analysis. After identifying predictor variables from a broader set of candidate variables, I estimate a Dirichlet regression model using data from all post-war by-elections in the UK (n=468). The cross-validated error of the model is comparable to the error of costly and infrequent by-election polls (MAE: 4.0 compared to 3.6 for polls). The steps taken in the analysis are in principle applicable to any system that uses by-elections to fill legislative vacancies.
Keywords: Dirichlet regression; By-elections; Special elections; Election forecasting; Compositional data; Polling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000583
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:37:y:2021:i:4:p:1666-1676
DOI: 10.1016/j.ijforecast.2021.03.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().