EconPapers    
Economics at your fingertips  
 

Classification-based model selection in retail demand forecasting

Matthias Ulrich, Hermann Jahnke, Roland Langrock, Robert Pesch and Robin Senge

International Journal of Forecasting, 2022, vol. 38, issue 1, 209-223

Abstract: Retailers supply a wide range of stock keeping units (SKUs), which may differ for example in terms of demand quantity, demand frequency, demand regularity, and demand variation. Given this diversity in demand patterns, it is unlikely that any single model for demand forecasting can yield the highest forecasting accuracy across all SKUs. To save costs through improved forecasting, there is thus a need to match any given demand pattern to its most appropriate prediction model. To this end, we propose an automated model selection framework for retail demand forecasting. Specifically, we consider model selection as a classification problem, where classes correspond to the different models available for forecasting. We first build labeled training data based on the models’ performances in previous demand periods with similar demand characteristics. For future data, we then automatically select the most promising model via classification based on the labeled training data. The performance is measured by economic profitability, taking into account asymmetric shortage and inventory costs. In an exploratory case study using data from an e-grocery retailer, we compare our approach to established benchmarks. We find promising results, but also that no single approach clearly outperforms its competitors, underlying the need for case-specific solutions.

Keywords: Forecasting; Inventory; e-commerce; Retailing; Model selection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207021000935
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:1:p:209-223

DOI: 10.1016/j.ijforecast.2021.05.010

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:38:y:2022:i:1:p:209-223