Retail forecasting: Research and practice
Robert Fildes,
Shaohui Ma and
Stephan Kolassa
International Journal of Forecasting, 2022, vol. 38, issue 4, 1283-1318
Abstract:
This paper reviews the research literature on forecasting retail demand. We begin by introducing the forecasting problems that retailers face, from the strategic to the operational, as sales are aggregated over products to stores and to the company overall. Aggregated forecasting supports strategic decisions on location. Product-level forecasts usually relate to operational decisions at the store level. The factors that influence demand, and in particular promotional information, add considerable complexity, so that forecasters potentially face the dimensionality problem of too many variables and too little data. The paper goes on to evaluate evidence on comparative forecasting accuracy. Although causal models outperform simple benchmarks, adequate evidence on machine learning methods has not yet accumulated. Methods for forecasting new products are examined separately, with little evidence being found on the effectiveness of the various approaches. The paper concludes by describing company forecasting practices, offering conclusions as to both research gaps and barriers to improved practice.
Keywords: Retail forecasting; Product hierarchies; Marketing analytics; New products; Comparative accuracy; Forecasting practice; Social media data (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920701930192X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:38:y:2022:i:4:p:1283-1318
DOI: 10.1016/j.ijforecast.2019.06.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().