A fully Bayesian tracking algorithm for mitigating disparate prediction misclassification
Martin B. Short and
George O. Mohler
International Journal of Forecasting, 2023, vol. 39, issue 3, 1238-1252
Abstract:
We develop a fully Bayesian tracking algorithm with the purpose of providing classification prediction results that are unbiased when applied uniformly to individuals with differing sensitive variable values, e.g., of different races, sexes, etc. Here, we consider bias in the form of group-level differences in false prediction rates between the different sensitive variable groups. Given that the method is fully Bayesian, it is well suited for situations where group parameters or regression coefficients are dynamic quantities. We illustrate our method, in comparison to others, on simulated datasets and two real-world datasets.
Keywords: Bayesian; Tracking algorithm; Fair algorithm; Bias reduction; Recidivism (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000681
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:3:p:1238-1252
DOI: 10.1016/j.ijforecast.2022.05.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().