Projected Dynamic Conditional Correlations
Jordi Llorens-Terrazas and
Christian Brownlees
International Journal of Forecasting, 2023, vol. 39, issue 4, 1761-1776
Abstract:
We propose a novel specification of the Dynamic Conditional Correlation (DCC) model based on an alternative normalization of the pseudo-correlation matrix called Projected DCC (Pro-DCC). Our modification consists in projecting, rather than rescaling, the pseudo-correlation matrix onto the set of correlation matrices in order to obtain a well defined conditional correlation matrix. A simulation study shows that projecting performs better than rescaling when the dimensionality of the correlation matrix is large. An empirical application to the constituents of the S&P 100 shows that the proposed methodology performs favorably to the standard DCC in an out-of-sample asset allocation exercise.
Keywords: Multivariate volatility; DCC; Bregman projection; Nearest-correlation matrix; Stein’s loss (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207022000942
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:39:y:2023:i:4:p:1761-1776
DOI: 10.1016/j.ijforecast.2022.06.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().