EconPapers    
Economics at your fingertips  
 

Forecasting day-ahead electricity prices with spatial dependence

Yifan Yang, Guo, Ju’e, Yi Li and Jiandong Zhou

International Journal of Forecasting, 2024, vol. 40, issue 3, 1255-1270

Abstract: Market integration connects multiple autarkic electricity markets and facilitates the flow of power across areas. More often than not, market integration can increase social welfare for the whole power system with a clear spatial dependence structure among area electricity prices, which motivates a new perspective on electricity price forecasting. In this paper, we construct a model to forecast the day-ahead electricity prices of Nord Pool with spatial dependence. First of all, we convert the electricity prices into graph data. Then, we propose an STGNN (Spatial-Temporal Graph Neural Network) model to exploit spatial and temporal features. In particular, the STGNN model can accurately forecast electricity prices for multiple areas, where the adjacency matrix representing the spatial dependence structure is pre-captured by the R-vine (regular vine) copula. Our results show that the spatial dependence structure described by the R-vine copula can perfectly reflect the physical characteristics of the electricity system; moreover, the forecasting performance of the proposed STGNN model is significantly better than the existing models in terms of overall accuracy and hourly accuracy within a day.

Keywords: Electricity price; Spatial dependence; Forecasting; R-vine copula; Graph Neural Network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207023001152
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:40:y:2024:i:3:p:1255-1270

DOI: 10.1016/j.ijforecast.2023.11.006

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:40:y:2024:i:3:p:1255-1270